Filtros : "EEL" "Philippini, Rafael R" Removido: "Sociedade Brasileira de Pesquisa em Materiais (SBPMat)" Limpar

Filtros



Refine with date range


  • Source: Fermentation-Basel. Unidade: EEL

    Subjects: ÓLEO DE SOJA, BIOTECNOLOGIA, SUSTENTABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Fernanda Gonçalves et al. Production, Physicochemical and Structural Characterization of a Bioemulsifier Produced in a Culture Medium Composed of Sugarcane Bagasse Hemicellulosic Hydrolysate and Soybean Oil in the Context of Biorefineries. Fermentation-Basel, v. 8, n. 618 , p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.3390/fermentation8110618. Acesso em: 07 maio 2024.
    • APA

      Barbosa, F. G., Marcelino, P. R. F., Lacerda, T. M., Philippini, R. R., Giancaterino, E. T., MANCEBO, M. A. R. C. O. S. C. A. M. P. O. S., et al. (2022). Production, Physicochemical and Structural Characterization of a Bioemulsifier Produced in a Culture Medium Composed of Sugarcane Bagasse Hemicellulosic Hydrolysate and Soybean Oil in the Context of Biorefineries. Fermentation-Basel, 8( 618 ), 1-21. doi:10.3390/fermentation8110618
    • NLM

      Barbosa FG, Marcelino PRF, Lacerda TM, Philippini RR, Giancaterino ET, MANCEBO MARCOSCAMPOS, Santos JC dos, Silva SS da. Production, Physicochemical and Structural Characterization of a Bioemulsifier Produced in a Culture Medium Composed of Sugarcane Bagasse Hemicellulosic Hydrolysate and Soybean Oil in the Context of Biorefineries [Internet]. Fermentation-Basel. 2022 ;8( 618 ): 1-21.[citado 2024 maio 07 ] Available from: https://doi.org/10.3390/fermentation8110618
    • Vancouver

      Barbosa FG, Marcelino PRF, Lacerda TM, Philippini RR, Giancaterino ET, MANCEBO MARCOSCAMPOS, Santos JC dos, Silva SS da. Production, Physicochemical and Structural Characterization of a Bioemulsifier Produced in a Culture Medium Composed of Sugarcane Bagasse Hemicellulosic Hydrolysate and Soybean Oil in the Context of Biorefineries [Internet]. Fermentation-Basel. 2022 ;8( 618 ): 1-21.[citado 2024 maio 07 ] Available from: https://doi.org/10.3390/fermentation8110618
  • Source: Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources Status and Innovation. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHANDEL, Anuj Kumar et al. Lignocellulose biorefinery: Technical challenges, perspectives on industrialization, and solutions. Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources Status and Innovation. Tradução . [S.l.]: Elsevier Press, 2022. p. 1-39. Disponível em: https://doi.org/10.1016/B978-0-12-823531-7.00003-2. Acesso em: 07 maio 2024.
    • APA

      Chandel, A. K., Philippini, R. R., Martiniano, S. E., Ascencio, J. J., Hilares, R. T., Ramos, L., & Rodhe, A. V. (2022). Lignocellulose biorefinery: Technical challenges, perspectives on industrialization, and solutions. In Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources Status and Innovation (p. 1-39). Elsevier Press. doi:10.1016/B978-0-12-823531-7.00003-2
    • NLM

      Chandel AK, Philippini RR, Martiniano SE, Ascencio JJ, Hilares RT, Ramos L, Rodhe AV. Lignocellulose biorefinery: Technical challenges, perspectives on industrialization, and solutions [Internet]. In: Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources Status and Innovation. Elsevier Press; 2022. p. 1-39.[citado 2024 maio 07 ] Available from: https://doi.org/10.1016/B978-0-12-823531-7.00003-2
    • Vancouver

      Chandel AK, Philippini RR, Martiniano SE, Ascencio JJ, Hilares RT, Ramos L, Rodhe AV. Lignocellulose biorefinery: Technical challenges, perspectives on industrialization, and solutions [Internet]. In: Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources Status and Innovation. Elsevier Press; 2022. p. 1-39.[citado 2024 maio 07 ] Available from: https://doi.org/10.1016/B978-0-12-823531-7.00003-2
  • Source: Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies.. Unidade: EEL

    Subjects: BIOTECNOLOGIA, BIOMASSA, NANOTECNOLOGIA, SUSTENTABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      INGLE, Avinash P et al. Nanotechnological Interventions for Sustainable Production of Microbial Biofuel and Bioenergy. Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies. Tradução . [S.l.]: Springer Nature Singapore Pte Ltd, 2022. p. 191-226. Disponível em: https://doi.org/10.1007/978-981-16-3852-7_8. Acesso em: 07 maio 2024.
    • APA

      Ingle, A. P., Silva, G. M., Sanchez-Muñoz, S., Ribeaux, D. R., Oliveira, E. M. D., Santos, J. C. dos, et al. (2022). Nanotechnological Interventions for Sustainable Production of Microbial Biofuel and Bioenergy. In Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies. (p. 191-226). Springer Nature Singapore Pte Ltd. doi:10.1007/978-981-16-3852-7_8
    • NLM

      Ingle AP, Silva GM, Sanchez-Muñoz S, Ribeaux DR, Oliveira EMD, Santos JC dos, Silva SS da, Antunes FAF, Paula AV, Flumignan DL, Terán-Hilares R, Philippini RR, Martiniano SE, Abdeshahian P, Perez AH. Nanotechnological Interventions for Sustainable Production of Microbial Biofuel and Bioenergy [Internet]. In: Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies. Springer Nature Singapore Pte Ltd; 2022. p. 191-226.[citado 2024 maio 07 ] Available from: https://doi.org/10.1007/978-981-16-3852-7_8
    • Vancouver

      Ingle AP, Silva GM, Sanchez-Muñoz S, Ribeaux DR, Oliveira EMD, Santos JC dos, Silva SS da, Antunes FAF, Paula AV, Flumignan DL, Terán-Hilares R, Philippini RR, Martiniano SE, Abdeshahian P, Perez AH. Nanotechnological Interventions for Sustainable Production of Microbial Biofuel and Bioenergy [Internet]. In: Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies. Springer Nature Singapore Pte Ltd; 2022. p. 191-226.[citado 2024 maio 07 ] Available from: https://doi.org/10.1007/978-981-16-3852-7_8
  • Source: Fermentation. Unidade: EEL

    Subjects: CANA-DE-AÇÚCAR, SOJA, BAGAÇOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASCENCIO, Jesús J. et al. Comparative Highly Efficient Production of β-glucan by Lasiodiplodia theobromae CCT 3966 and Its Multiscale Characterization. Fermentation, v. 7, n. 108, 2021Tradução . . Disponível em: https://doi.org/10.3390/fermentation7030108. Acesso em: 07 maio 2024.
    • APA

      Ascencio, J. J., Philippini, R. R., GOMES, F. M., PEREIRA, F. M., Silva, S. S. da, Kumar, V., & Chandel, A. K. (2021). Comparative Highly Efficient Production of β-glucan by Lasiodiplodia theobromae CCT 3966 and Its Multiscale Characterization. Fermentation, 7( 108). doi:10.3390/fermentation7030108
    • NLM

      Ascencio JJ, Philippini RR, GOMES FM, PEREIRA FM, Silva SS da, Kumar V, Chandel AK. Comparative Highly Efficient Production of β-glucan by Lasiodiplodia theobromae CCT 3966 and Its Multiscale Characterization [Internet]. Fermentation. 2021 ; 7( 108):[citado 2024 maio 07 ] Available from: https://doi.org/10.3390/fermentation7030108
    • Vancouver

      Ascencio JJ, Philippini RR, GOMES FM, PEREIRA FM, Silva SS da, Kumar V, Chandel AK. Comparative Highly Efficient Production of β-glucan by Lasiodiplodia theobromae CCT 3966 and Its Multiscale Characterization [Internet]. Fermentation. 2021 ; 7( 108):[citado 2024 maio 07 ] Available from: https://doi.org/10.3390/fermentation7030108
  • Source: Microbial Nanobiotechnology. Unidade: EEL

    Subjects: PROCESSAMENTO DE ALIMENTOS, NANOTECNOLOGIA, NANOPARTÍCULAS, CONTAMINAÇÃO DE ALIMENTOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      INGLE, Avinash P et al. Application of Microbial-Synthesized Nanoparticles in Food Industries. Microbial Nanobiotechnology. Tradução . [S.l.]: Springer Singapore, 2021. p. 399-424. Disponível em: https://doi.org/10.1007/978-981-33-4777-9_14. Acesso em: 07 maio 2024.
    • APA

      Ingle, A. P., Philippini, R. R., Martiniano, S. E., Antunes, F. A. F., Rocha, T. M., & Silva, S. S. da. (2021). Application of Microbial-Synthesized Nanoparticles in Food Industries. In Microbial Nanobiotechnology (p. 399-424). Springer Singapore. doi:10.1007/978-981-33-4777-9_14
    • NLM

      Ingle AP, Philippini RR, Martiniano SE, Antunes FAF, Rocha TM, Silva SS da. Application of Microbial-Synthesized Nanoparticles in Food Industries [Internet]. In: Microbial Nanobiotechnology. Springer Singapore; 2021. p. 399-424.[citado 2024 maio 07 ] Available from: https://doi.org/10.1007/978-981-33-4777-9_14
    • Vancouver

      Ingle AP, Philippini RR, Martiniano SE, Antunes FAF, Rocha TM, Silva SS da. Application of Microbial-Synthesized Nanoparticles in Food Industries [Internet]. In: Microbial Nanobiotechnology. Springer Singapore; 2021. p. 399-424.[citado 2024 maio 07 ] Available from: https://doi.org/10.1007/978-981-33-4777-9_14
  • Source: Bioresource technology. Unidade: EEL

    Assunto: BIOPOLÍMEROS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABDESHAHIAN, Peyman et al. Utilization of sugarcane straw for production of β-glucan biopolymer by Lasiodiplodia theobromae CCT 3966 in batch fermentation process. Bioresource technology, v. 314, p. 1-10, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2020.123716. Acesso em: 07 maio 2024.
    • APA

      Abdeshahian, P., Ascencio, J. J., Philippini, R. R., Antunes, F. A. F., Santos, J. C., & Silva, S. S. da. (2020). Utilization of sugarcane straw for production of β-glucan biopolymer by Lasiodiplodia theobromae CCT 3966 in batch fermentation process. Bioresource technology, 314, 1-10. doi:10.1016/j.biortech.2020.123716
    • NLM

      Abdeshahian P, Ascencio JJ, Philippini RR, Antunes FAF, Santos JC, Silva SS da. Utilization of sugarcane straw for production of β-glucan biopolymer by Lasiodiplodia theobromae CCT 3966 in batch fermentation process [Internet]. Bioresource technology. 2020 ;314 1-10.[citado 2024 maio 07 ] Available from: https://doi.org/10.1016/j.biortech.2020.123716
    • Vancouver

      Abdeshahian P, Ascencio JJ, Philippini RR, Antunes FAF, Santos JC, Silva SS da. Utilization of sugarcane straw for production of β-glucan biopolymer by Lasiodiplodia theobromae CCT 3966 in batch fermentation process [Internet]. Bioresource technology. 2020 ;314 1-10.[citado 2024 maio 07 ] Available from: https://doi.org/10.1016/j.biortech.2020.123716
  • Source: Symmetry-Basel. Unidade: EEL

    Subjects: BIODIESEL, CATÁLISE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      INGLE, Avinash P et al. Advances in Nanocatalysts Mediated Biodiesel Production: A Critical Appraisal. Symmetry-Basel, v. 12, n. 2 , p. 1-21, 2020Tradução . . Disponível em: https://doi.org/10.3390/sym12020256. Acesso em: 07 maio 2024.
    • APA

      Ingle, A. P., Chandel, A. K., Philippini, R. R., Martiniano, S. E., & Silva, S. S. da. (2020). Advances in Nanocatalysts Mediated Biodiesel Production: A Critical Appraisal. Symmetry-Basel, 12( 2 ), 1-21. doi:10.3390/sym12020256
    • NLM

      Ingle AP, Chandel AK, Philippini RR, Martiniano SE, Silva SS da. Advances in Nanocatalysts Mediated Biodiesel Production: A Critical Appraisal [Internet]. Symmetry-Basel. 2020 ;12( 2 ): 1-21.[citado 2024 maio 07 ] Available from: https://doi.org/10.3390/sym12020256
    • Vancouver

      Ingle AP, Chandel AK, Philippini RR, Martiniano SE, Silva SS da. Advances in Nanocatalysts Mediated Biodiesel Production: A Critical Appraisal [Internet]. Symmetry-Basel. 2020 ;12( 2 ): 1-21.[citado 2024 maio 07 ] Available from: https://doi.org/10.3390/sym12020256
  • Source: Cellulose. Unidade: EEL

    Assunto: NANOPARTÍCULAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      INGLE, Avinash P et al. Acid-functionalized magnetic nanocatalysts mediated pretreatment of sugarcane straw: an eco-friendly and cost-effective approach. Cellulose, n. 27, p. 7067–7078, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10570-020-03262-y. Acesso em: 07 maio 2024.
    • APA

      Ingle, A. P., Philippini, R. R., Melo, Y. C. de S., & Silva, S. S. da. (2020). Acid-functionalized magnetic nanocatalysts mediated pretreatment of sugarcane straw: an eco-friendly and cost-effective approach. Cellulose, ( 27), 7067–7078. doi:10.1007/s10570-020-03262-y
    • NLM

      Ingle AP, Philippini RR, Melo YC de S, Silva SS da. Acid-functionalized magnetic nanocatalysts mediated pretreatment of sugarcane straw: an eco-friendly and cost-effective approach [Internet]. Cellulose. 2020 ;( 27): 7067–7078.[citado 2024 maio 07 ] Available from: https://doi.org/10.1007/s10570-020-03262-y
    • Vancouver

      Ingle AP, Philippini RR, Melo YC de S, Silva SS da. Acid-functionalized magnetic nanocatalysts mediated pretreatment of sugarcane straw: an eco-friendly and cost-effective approach [Internet]. Cellulose. 2020 ;( 27): 7067–7078.[citado 2024 maio 07 ] Available from: https://doi.org/10.1007/s10570-020-03262-y
  • Source: Frontiers in Energy Research. Unidade: EEL

    Subjects: BIOPOLÍMEROS, LEVEDURAS, BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PHILIPPINI, Rafael R et al. Agroindustrial Byproducts for the Generation of Biobased Products: Alternatives for Sustainable Biorefineries. Frontiers in Energy Research, v. 8, n. 152 , p. 1-23, 2020Tradução . . Disponível em: https://doi.org/10.3389/fenrg.2020.00152. Acesso em: 07 maio 2024.
    • APA

      Philippini, R. R., Martiniano, S. E., Ingle, A. P., Marcelino, P. R. F., Silva, G. M., BARBOSA, F. E. R. N. A. N. D. A. G. O. N. Ç. A. L. V. E. S., et al. (2020). Agroindustrial Byproducts for the Generation of Biobased Products: Alternatives for Sustainable Biorefineries. Frontiers in Energy Research, 8( 152 ), 1-23. doi:10.3389/fenrg.2020.00152
    • NLM

      Philippini RR, Martiniano SE, Ingle AP, Marcelino PRF, Silva GM, BARBOSA FERNANDAGONÇALVES, Santos JC, Silva SS da. Agroindustrial Byproducts for the Generation of Biobased Products: Alternatives for Sustainable Biorefineries [Internet]. Frontiers in Energy Research. 2020 ;8( 152 ): 1-23.[citado 2024 maio 07 ] Available from: https://doi.org/10.3389/fenrg.2020.00152
    • Vancouver

      Philippini RR, Martiniano SE, Ingle AP, Marcelino PRF, Silva GM, BARBOSA FERNANDAGONÇALVES, Santos JC, Silva SS da. Agroindustrial Byproducts for the Generation of Biobased Products: Alternatives for Sustainable Biorefineries [Internet]. Frontiers in Energy Research. 2020 ;8( 152 ): 1-23.[citado 2024 maio 07 ] Available from: https://doi.org/10.3389/fenrg.2020.00152
  • Source: Current Developments in Biotechnology and Bioengineering: Sustainable Bioresources for the Emerging Bioeconomy. Unidade: EEL

    Subjects: RECURSOS NATURAIS, BIOMASSA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      INGLE, Avinash P et al. Bioresources and their significance: prospects and obstacles. Current Developments in Biotechnology and Bioengineering: Sustainable Bioresources for the Emerging Bioeconomy. Tradução . [S.l.]: Elsevier, 2020. p. 3-40. Disponível em: https://doi.org/10.1016/B978-0-444-64309-4.00001-5. Acesso em: 07 maio 2024.
    • APA

      Ingle, A. P., Philippini, R. R., Martiniano, S. E., Marcelino, P. R. F., Gupta, I., Prasad, S., & Silva, S. S. da. (2020). Bioresources and their significance: prospects and obstacles. In Current Developments in Biotechnology and Bioengineering: Sustainable Bioresources for the Emerging Bioeconomy (p. 3-40). Elsevier. doi:10.1016/B978-0-444-64309-4.00001-5
    • NLM

      Ingle AP, Philippini RR, Martiniano SE, Marcelino PRF, Gupta I, Prasad S, Silva SS da. Bioresources and their significance: prospects and obstacles [Internet]. In: Current Developments in Biotechnology and Bioengineering: Sustainable Bioresources for the Emerging Bioeconomy. Elsevier; 2020. p. 3-40.[citado 2024 maio 07 ] Available from: https://doi.org/10.1016/B978-0-444-64309-4.00001-5
    • Vancouver

      Ingle AP, Philippini RR, Martiniano SE, Marcelino PRF, Gupta I, Prasad S, Silva SS da. Bioresources and their significance: prospects and obstacles [Internet]. In: Current Developments in Biotechnology and Bioengineering: Sustainable Bioresources for the Emerging Bioeconomy. Elsevier; 2020. p. 3-40.[citado 2024 maio 07 ] Available from: https://doi.org/10.1016/B978-0-444-64309-4.00001-5
  • Source: Biomass conversion and biorefinery. Unidade: EEL

    Subjects: BIOTECNOLOGIA, ENZIMAS HIDROLÍTICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASCENCIO, Jesús J et al. Comparative study of cellulosic sugars production from sugarcane bagasse after dilute nitric acid, dilute sodium hydroxide and sequential nitric acid-sodium hydroxide pretreatment. Biomass conversion and biorefinery, v. 10, p. p813-822, 2019Tradução . . Disponível em: https://doi.org/10.1007/s13399-019-00547-6. Acesso em: 07 maio 2024.
    • APA

      Ascencio, J. J., Chandel, A. K., Philippini, R. R., & Silva, S. S. da. (2019). Comparative study of cellulosic sugars production from sugarcane bagasse after dilute nitric acid, dilute sodium hydroxide and sequential nitric acid-sodium hydroxide pretreatment. Biomass conversion and biorefinery, 10, p813-822. doi:10.1007/s13399-019-00547-6
    • NLM

      Ascencio JJ, Chandel AK, Philippini RR, Silva SS da. Comparative study of cellulosic sugars production from sugarcane bagasse after dilute nitric acid, dilute sodium hydroxide and sequential nitric acid-sodium hydroxide pretreatment [Internet]. Biomass conversion and biorefinery. 2019 ;10 p813-822.[citado 2024 maio 07 ] Available from: https://doi.org/10.1007/s13399-019-00547-6
    • Vancouver

      Ascencio JJ, Chandel AK, Philippini RR, Silva SS da. Comparative study of cellulosic sugars production from sugarcane bagasse after dilute nitric acid, dilute sodium hydroxide and sequential nitric acid-sodium hydroxide pretreatment [Internet]. Biomass conversion and biorefinery. 2019 ;10 p813-822.[citado 2024 maio 07 ] Available from: https://doi.org/10.1007/s13399-019-00547-6
  • Source: IET Nanobiotechnology. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      INGLE, Avinash P et al. Catalytic hydrolysis of cellobiose using different acid-functionalized Fe3O4 magnetic nanoparticles. IET Nanobiotechnology, v. 14, n. 1, p. p 40-46, 2019Tradução . . Disponível em: https://doi.org/10.1049/iet-nbt.2019.0181. Acesso em: 07 maio 2024.
    • APA

      Ingle, A. P., Philippini, R. R., Silva, S. S. da, & Rai, M. (2019). Catalytic hydrolysis of cellobiose using different acid-functionalized Fe3O4 magnetic nanoparticles. IET Nanobiotechnology, 14( 1), p 40-46. doi:10.1049/iet-nbt.2019.0181
    • NLM

      Ingle AP, Philippini RR, Silva SS da, Rai M. Catalytic hydrolysis of cellobiose using different acid-functionalized Fe3O4 magnetic nanoparticles [Internet]. IET Nanobiotechnology. 2019 ;14( 1): p 40-46.[citado 2024 maio 07 ] Available from: https://doi.org/10.1049/iet-nbt.2019.0181
    • Vancouver

      Ingle AP, Philippini RR, Silva SS da, Rai M. Catalytic hydrolysis of cellobiose using different acid-functionalized Fe3O4 magnetic nanoparticles [Internet]. IET Nanobiotechnology. 2019 ;14( 1): p 40-46.[citado 2024 maio 07 ] Available from: https://doi.org/10.1049/iet-nbt.2019.0181
  • Source: Bioprocessing for Biomolecules Production. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PHILIPPINI, Rafael R et al. Fermentative Production of Beta-Glucan: Properties and Potential Applications. Bioprocessing for Biomolecules Production. Tradução . [S.l.]: John Wiley& Sons, Ltd., 2019. p. 303-320. Disponível em: https://doi.org/10.1002/9781119434436.ch15. Acesso em: 07 maio 2024.
    • APA

      Philippini, R. R., Martiniano, S. E., Santos, J. C. dos, Silva, S. S. da, & Chandel, A. K. (2019). Fermentative Production of Beta-Glucan: Properties and Potential Applications. In Bioprocessing for Biomolecules Production (p. 303-320). John Wiley& Sons, Ltd. doi:10.1002/9781119434436.ch15
    • NLM

      Philippini RR, Martiniano SE, Santos JC dos, Silva SS da, Chandel AK. Fermentative Production of Beta-Glucan: Properties and Potential Applications [Internet]. In: Bioprocessing for Biomolecules Production. John Wiley& Sons, Ltd.; 2019. p. 303-320.[citado 2024 maio 07 ] Available from: https://doi.org/10.1002/9781119434436.ch15
    • Vancouver

      Philippini RR, Martiniano SE, Santos JC dos, Silva SS da, Chandel AK. Fermentative Production of Beta-Glucan: Properties and Potential Applications [Internet]. In: Bioprocessing for Biomolecules Production. John Wiley& Sons, Ltd.; 2019. p. 303-320.[citado 2024 maio 07 ] Available from: https://doi.org/10.1002/9781119434436.ch15

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024